Nama : Muhammad Yoga Pratama dan Ilyas Antok Hanjaya
Kelas : X TKJ
Guru : Selamet Haryadi
Abstrak : Mengenai materi sistem komputer kali ini saya mempelajari tentang sistem bilangan. Sistem bilangan terdiri dari 4 macam, yaitu sistem bilangan biner, desimal, oktal, dan heksadesimal. Bilangan biner adalah sistem bilangan yang terdiri dari angka 1 dan 0. Sistem bilangan desimal merupakan sistem bilangan yang menggunakan 10 angka yaitu angka 0-9, setelah angka 9 maka angka berikutnya adalah 10, 11, 12, dan seterusnya. Sistem bilangan oktal adalah bilangan berbasis 8, menggunakan angka 0-7. Bilangan Heksadesimal adalah bilangan berbasis 16, dimulai 0-9 kemudian A-F.
Soal
1. Jelaskan
pengertian bilangan biner, desimal, oktal, dan heksadesimal!
2. Jelaskan
cara mengubah bilangan biner ke desimal, desimal ke biner, biner ke oktal,
oktal ke biner, biner ke heksa, dan heksa ke biner!
Jawab
1.
-
Bilangan biner adalah bilangan yang menggunakan 2
angka, yaitu angka 1 dan 0.
-
Bilangan desimal adalah
bilangan yang menggunakan 10 angka mulai 0 sampai 9 berturut2. Setelah angka 9,
maka angka berikutnya adalah 10, 11, 12 dan seterusnya. Bilangan desimal
disebut juga bilangan berbasis 10. Contoh penulisan bilangan desimal : 1710.
Ingat, desimal berbasis 10, maka angka 10-lah yang menjadi subscript
pada penulisan bilangan desimal.
-
Bilangan oktal adalah
bilangan berbasis 8, yang menggunakan angka 0 sampai 7. Contoh penulisan : 178.
-
Bilangan heksadesimal, atau
bilangan heksa, atau bilangan basis 16, menggunakan 16 buah simbol, mulai
dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F
merupakan simbol untuk 10 sampai 15. Contoh penulisan : C516.
2.
·
Konversi Bilangan Biner ke Desimal
Proses
konversi bilangan biner ke bilangan desimal adalah proses perkalian setiap bit
pada bilangan biner dengan perpangkatan 2, dimana perpangkatan 2 tersebut
berurut dari kanan ke kiri bit bernilai 2o sampai 2n.
Langsung saja saya ambil contoh bilangan yang merupakan hasil perhitungan di atas, yaitu 110012. Misalkan bilangan tersebut saya ubah posisinya mulai dari kanan ke kiri menjadi seperti ini.
1
0
0
1
1
Nah, saatnya mengalikan setiap bit dengan perpangkatan 2. Ingat, perpangkatan 2 tersebut berurut mulai dari 2o sampai 2n, untuk setiap bit mulai dari kanan ke kiri. Maka :
1 ——> 1 x 2o = 1
0 ——> 0 x 21 = 0
0 ——> 0 x 22 = 0
1 ——> 1 x 23 = 8
1 ——> 1 x 24 = 16 —> perhatikan nilai perpangkatan 2 nya semakin ke bawah semakin besar
Maka hasilnya adalah 1 + 0 + 0 + 8 + 16 = 2510.
Langsung saja saya ambil contoh bilangan yang merupakan hasil perhitungan di atas, yaitu 110012. Misalkan bilangan tersebut saya ubah posisinya mulai dari kanan ke kiri menjadi seperti ini.
1
0
0
1
1
Nah, saatnya mengalikan setiap bit dengan perpangkatan 2. Ingat, perpangkatan 2 tersebut berurut mulai dari 2o sampai 2n, untuk setiap bit mulai dari kanan ke kiri. Maka :
1 ——> 1 x 2o = 1
0 ——> 0 x 21 = 0
0 ——> 0 x 22 = 0
1 ——> 1 x 23 = 8
1 ——> 1 x 24 = 16 —> perhatikan nilai perpangkatan 2 nya semakin ke bawah semakin besar
Maka hasilnya adalah 1 + 0 + 0 + 8 + 16 = 2510.
·
Konversi bilangan Desimal ke Biner
Misalkan
bilangan desimal yang ingin saya konversi adalah 2510.
Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :
25 : 2 = 12,5
Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :
25 : 2 = 12 sisa 1. —–> Sampai disini masih mengerti kan?
Langkah selanjutnya adalah membagi angka 12 tersebut dengan 2 lagi. Hasilnya sebagai berikut :
12 : 2 = 6 sisa 0. —–> Ingat, selalu tulis sisanya.
Proses tersebut dilanjutkan sampai angka yang hendak dibagi adalah 0, sebagai berikut :
25 : 2 = 12 sisa 1.
12 : 2 = 6 sisa 0.
6 : 2 = 3 sisa 0.
3 : 2 = 1 sisa 1.
1 : 2 = 0 sisa 1.
0 : 2 = 0 sisa 0…. (end)
Nah, setelah didapat perhitungan tadi, pertanyaan berikutnya adalah, hasil konversinya yang mana? Ya, hasil konversinya adalah urutan seluruh sisa-sisa perhitungan telah diperoleh, dimulai dari bawah ke atas.
Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012.
Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :
25 : 2 = 12,5
Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :
25 : 2 = 12 sisa 1. —–> Sampai disini masih mengerti kan?
Langkah selanjutnya adalah membagi angka 12 tersebut dengan 2 lagi. Hasilnya sebagai berikut :
12 : 2 = 6 sisa 0. —–> Ingat, selalu tulis sisanya.
Proses tersebut dilanjutkan sampai angka yang hendak dibagi adalah 0, sebagai berikut :
25 : 2 = 12 sisa 1.
12 : 2 = 6 sisa 0.
6 : 2 = 3 sisa 0.
3 : 2 = 1 sisa 1.
1 : 2 = 0 sisa 1.
0 : 2 = 0 sisa 0…. (end)
Nah, setelah didapat perhitungan tadi, pertanyaan berikutnya adalah, hasil konversinya yang mana? Ya, hasil konversinya adalah urutan seluruh sisa-sisa perhitungan telah diperoleh, dimulai dari bawah ke atas.
Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012.
·
Konversi
bilangan Biner ke Oktal
Untuk
merubah bilangan biner ke bilangan oktal, perlu diperhatikan bahwa setiap bilangan
oktal mewakili 3 bit dari bilangan biner. Maka jika kita memiliki
bilangan biner 1101112 yang ingin dikonversi ke bilangan
oktal, langkah pertama yang kita lakukan adalah memilah-milah bilangan biner
tersebut, setiap bagian 3 bit, mulai dari kanan ke kiri, sehingga
menjadi seperti berikut :
110 dan 111
Sengaja saya buat agak berjarak, supaya lebih mudah dimengerti. Nah, setelah dilakukan proses pemilah2an seperti ini, dilakukan proses konversi ke desimal terlebih dahulu secara terpisah. 110 dikonversi menjadi 6, dan 111 dikonversi menjadi 7. Hasilnya kemudian digabungkan, menjadi 678, yang merupakan bilangan oktal dari 1101112… 8)
“Tapi, itu kan kebetulan bilangan binernya pas 6 bit. Jadi dipilah2 3 pun masih pas. Gimana kalau bilangan binernya, contohnya, 5 bit?” Hehe…Gampang..Contohnya 110012. 5 bit kan? Sebenarnya pemilah2an itu dimulai dari kanan ke kiri. Jadi hasilnya 11 dan 001. Ini kan sebenarnya sudah bisa masing2 diubah ke dalam bentuk desimal. Tapi kalau mau menambah kenyamanan di mata, tambahin aja 1 angka 0 di depannya. Jadi 0110012. Tidak akan merubah hasil perhitungan kok. Tinggal dipilah2 seperti tadi. Okeh?
110 dan 111
Sengaja saya buat agak berjarak, supaya lebih mudah dimengerti. Nah, setelah dilakukan proses pemilah2an seperti ini, dilakukan proses konversi ke desimal terlebih dahulu secara terpisah. 110 dikonversi menjadi 6, dan 111 dikonversi menjadi 7. Hasilnya kemudian digabungkan, menjadi 678, yang merupakan bilangan oktal dari 1101112… 8)
“Tapi, itu kan kebetulan bilangan binernya pas 6 bit. Jadi dipilah2 3 pun masih pas. Gimana kalau bilangan binernya, contohnya, 5 bit?” Hehe…Gampang..Contohnya 110012. 5 bit kan? Sebenarnya pemilah2an itu dimulai dari kanan ke kiri. Jadi hasilnya 11 dan 001. Ini kan sebenarnya sudah bisa masing2 diubah ke dalam bentuk desimal. Tapi kalau mau menambah kenyamanan di mata, tambahin aja 1 angka 0 di depannya. Jadi 0110012. Tidak akan merubah hasil perhitungan kok. Tinggal dipilah2 seperti tadi. Okeh?
·
Konversi bilangan Oktal ke Biner
Langsung
ke contoh. Misalkan saya ingin mengubah bilangan oktal 578 ke
biner. Maka langkah yang saya lakukan adalah melakukan proses konversi setiap
bilangan tersebut masing2 ke 3 bit bilangan biner. Nah, angka 5 jika
dikonversi ke biner menjadi….? 1012. Sip. Nah, 7, jika
dikonversi ke biner menjadi…? 1112. Mantap. Maka hasilnya
adalah 1011112.
·
Konversi bilangan Biner ke Heksadesimal
Hmm…sebagai
contoh, misalnya saya ingin ubah 111000102 ke bentuk
heksadesimal. Proses konversinya juga tidak begitu rumit, hanya tinggal
memilahkan bit2 tersebut menjadi kelompok2 4 bit. Pemilahan
dimulai dari kanan ke kiri, sehingga hasilnya sbb :
1110 dan 0010
Nah, coba lihat bit2 tersebut. Konversilah bit2 tersebut ke desimal terlebih dahulu satu persatu, sehingga didapat :
1110 = 14 dan 0010 = 2
Nah, ingat kalau 14 itu dilambangkan apa di heksadesimal? Ya, 14 dilambangkan dengan E16.
Dengan demikian, hasil konversinya adalah E216.
Seperti tadi juga, gimana kalau bilangan binernya tidak berjumlah 8 bit? Contohnya 1101012? Yaa…Seperti tadi juga, tambahin aja 0 di depannya. Tidak akan memberi pengaruh apa2 kok ke hasilnya. Jadi setelah ditambah menjadi 001101012.
1110 dan 0010
Nah, coba lihat bit2 tersebut. Konversilah bit2 tersebut ke desimal terlebih dahulu satu persatu, sehingga didapat :
1110 = 14 dan 0010 = 2
Nah, ingat kalau 14 itu dilambangkan apa di heksadesimal? Ya, 14 dilambangkan dengan E16.
Dengan demikian, hasil konversinya adalah E216.
Seperti tadi juga, gimana kalau bilangan binernya tidak berjumlah 8 bit? Contohnya 1101012? Yaa…Seperti tadi juga, tambahin aja 0 di depannya. Tidak akan memberi pengaruh apa2 kok ke hasilnya. Jadi setelah ditambah menjadi 001101012.
·
Konversi bilangan Heksadesimal ke Biner
Dalam
proses konversi heksadesimal ke biner, setiap simbol dalam heksadesimal
mewakili 4 bit dari biner. Misalnya saya ingin melakukan proses konversi
bilangan heksa B716 ke bilangan biner. Maka setiap simbol di
bilangan heksa tersebut saya konversi terpisah ke biner. Ingat, B16
merupakan simbol untuk angka desimal 1110. Nah, desimal 1110
jika dikonversi ke biner menjadi 10112, sedangkan desimal 710
jika dikonversi ke biner menjadi 01112. Maka bilangan
binernya adalah 101101112, atau kalau dibuat ilustrasinya
seperti berikut ini :
B 7 —-> bentuk heksa
11 7 —-> bentuk desimal
1011 0111 —-> bentuk biner
Hasilnya disatukan, sehingga menjadi 101101112.
B 7 —-> bentuk heksa
11 7 —-> bentuk desimal
1011 0111 —-> bentuk biner
Hasilnya disatukan, sehingga menjadi 101101112.
Sumber :dokumen milik teman
1 Komentar untuk "Materi Sistem Bilangan "
Ijin copy pal :)